Органические соединения в космосе - Статьи по биологии - Статьи, выступления - Сайт учителя биологии и географии Лотоцкой Е. Г.
Понедельник, 05.12.2016, 03:21Главная | Регистрация | Вход

Вход

  Поиск

Новости биологии

Наш опрос

С какой периодичностью Вы посещаете мой сайт?
Всего ответов: 889

  Статистика


Онлайн всего: 5
Гостей: 5
Пользователей: 0

Статьи, выступления
Главная » Статьи » Статьи по биологии

Органические соединения в космосе
Взаимоотношение зародышей жизни и ее предшественников - сложных соединений углерода - представляет собой первостепенную научную задачу. Первые опыты Л. Пастера, поставленные во второй половине XIX в., показали невозможность в современных условиях Земли зарождения жизни - простейших живых организмов. Это в какой-то мере привело к возникновению идей панспермии*, согласно которым жизнь на Земле вообще никогда не зарождалась, а была занесена из космического пространства, где она существовала в виде зародышей. Наиболее характерными сторонниками этих представлений выступили Г. Гельмгольц и С. Аррениус, хотя ранее подобные идеи высказывались Ю. Либихом. По С. Аррениусу, частицы живого вещества - споры или бактерии, осевшие на микрочастицах космической пыли, силой светового давления переносятся с одной планеты на другую, сохраняя свою жизнеспособность. При попадании спор на планету с подходящими условиями для жизни они прорастают и дают начало биологической эволюции.
В несколько иных формах эти представления возрождаются в наше время. Например, Ф. Хойл выдвинул идею о возможности существования микроорганизмов в межзвездном пространстве. Согласно его представлениям, облака космической пыли сложены преимущественно бактериями и спорами. Предполагается, что в промежутке времени 4,6-3,8 млрд лет назад на Земле были возможны два события - или зарождение жизни на самой планете, или привнес микроорганизмов из космического пространства. Ф. Хойл и С. Викрамасинг в 1981 г. допустили, что последнее более вероятно. Согласно их расчетам, ежегодно в верхнюю атмосферу Земли поступает 1018 космических спор, как остаток твердого материала, рассеянного в Солнечной системе. Таким образом, кометы являются переносчиками зародышей жизни, которые образовались ранее в межзвездном пространстве и лишь затем попали в облако Оорта.
* Панспермия (от греч. ''пан'' - весь, всеобщий, ''сперма'' - семя) - древнее учение о повсеместном распространении во Вселенной вечных и неизменных зародышей жизни. Впервые встречается у древнегреческого философа Анаксагора (500-428 до и. э.).
Следует отметить крайнюю фантастичность высказанных представлений, которые не согласуются с известными экспериментальными данными. Однако несомненно, что жизнь связана с космосом по атомному составу и в энергетическом отношении. Это можно видеть из табл. 6, в которой даны величины относительного распространения элементов в космосе, в летучей фракции комет, в бактериях и млекопитающих. Обращает на себя внимание большая близость, а в отдельных случаях и тождественность космического вещества и живого вещества Земли. Главные элементы живого вещества - это широко распространенные элементы космоса. При этом Н, С, N, О - типичные биофильные элементы - наиболее широко распространены в природе.
Нетрудно сделать вывод, что живые организмы в первую очередь используют наиболее доступные атомы, которые, кроме того, способны образовывать устойчивые и кратные химические связи. Известно, что углерод может формировать длинные цепи, что приводит в возникновению бесчисленных полимеров. Сера и фосфор также могут образовывать кратные связи. Сера входит в состав белков, а фосфор - в состав нуклеиновых кислот.
В соответствующих условиях наиболее распространенные атомы соединяются друг с другом, образуя молекулы, которые обнаружены в космических облаках методами современной радиоастрономии. Большая часть известных космических молекул относится к органическим, включая наиболее сложные 8- и 11-атомные. Таким образом, в отношении состава космохимия Вселенной создает обширные возможности для различных комбинаций углерода с другими элементами по законам химической связи.
Однако проблема образования молекул в космических условиях относится к труднейшим проблемам космохимии. Собственно в межзвездной среде, даже в наиболее плотных ее участках, элементы находятся в условиях, далеких от термодинамического равновесия. В силу низкой концентрации вещества химические реакции в межзвездном пространстве крайне маловероятны. Поэтому было высказано предположение, что в построении межзвездных молекул принимают участие частицы космической пыли. В наиболее простом случае могут возникать молекулы водорода при контакте его атомов с твердыми частицами, Наиболее распространенные молекулы космоса СО, вероятно, способны зарождаться в условиях звездных атмосфер при достаточной плотности вещества и затем выбрасываться в космическое пространство.
В настоящее время все более четко вырисовывается роль твердой фазы в формировании молекул органических веществ в космическом пространстве. Наиболее вероятные модели этого процесса разработаны Дж. Гринбергом. По мнению ученого, частицы космической пыли имеют сложное строение и состоят из ядра преимущественно силикатного состава, окруженного оболочкой из органических веществ. В оболочке, по-видимому, происходят различные химические процессы, ведущие к усложнению строения первоначального вещества. Структура подобных пылевых частиц после первой стадии аккреции подтверждается путем экспериментального моделирования на смеси воды, метана, аммиака и других простых молекул, облученных ультрафиолетовой радиацией при температуре примерно 10 К. Каждая пылинка ведет свое начало от силикатного ядра, возникшего в атмосфере холодной звезды-гиганта. Вокруг ядра формируется ледяная оболочка. Под действием ультрафиолетового излучения некоторые молекулы оболочки (H2O СН4, NH3) диссоциируют с образованием радикалов - реакционноспособных фрагментов молекул. Эти радикалы могут рекомбинировать с образованием других молекул. В результате длительного облучения может появиться более сложная смесь молекул и радикалов (HN2HCO, HOCO, СНзОН, СНзС и др.). При разрушении пылинок под влиянием космических факторов возникшие на их поверхности соединения образуют молекулярные облака.
Если судить по огромным массам молекулярных облаков, то именно они - главные резервуары органического вещества в космосе. Однако найденные в них органические соединения оказываются относительно простыми и еще далекими от тех молекулярных систем, которые смогли бы обеспечить начало жизни на любом благоприятном планетном теле.
Особого внимания заслуживает нахождение органических веществ в метеоритах. Это очень важно для понимания процессов зарождения высокомолекулярных систем как предшественников жизни. Следует отметить, что метеориты совместно со своими родительскими телами - астероидами принадлежат к Солнечной системе. Далее возраст метеоритов, по данным ядерной геохронологии, 4,6-4,5 млрд лет, что в основном совпадает с возрастом Земли и Луны. Следовательно, метеориты, несомненно, являются свидетелями формирования различных химических соединений, в том числе и органических, на самых ранних этапах развития Солнечной системы.
В метеоритах найдены углеводороды, углеводы, пурины, пиримидины, аминокислоты, т. е. те химические соединения, которые входят в состав живого вещества, составляя его основу. Они встречены в углистых хондритах и астероидах определенных структуры и состава. Больше всего астероидов движется в поясе между Марсом и Юпитером. Если исходить из данных по космохимии комет, то Можно полагать, что область формирования органических соединений охватывала обширное пространство в пределах большей части объема первичной солнечной туманности. Естественно, что в освещении общей проблемы происхождения жизни мы не имеем права игнорировать данные о составе метеоритов. Это обстоятельство в различной степени учитывалось разными авторами гипотез о происхождении жизни. Таким образом, мы вправе сейчас рассматривать известные метеориты в качестве исторических документов - подлинных свидетелей ранней истории Солнечной системы, охватывающей также процессы формирования органических веществ.
Любой метеорит представляет собой твердое тело, состоящее из ряда минеральных фаз. Главными являются силикатная (каменная), металлическая (железоникелевая) и сульфидная (троилитовая). Встречаются также и другие фазы, но они имеют второстепенное значение по своему распространению. В метеоритах встречены различные минералы, число которых превышает 100, но главными породообразующими являются немногие (оливин, пироксен, полевые шпаты, никелистое железо, троилит и др.). Кроме того, в метеоритах встречено 20 минералов, которых нет в земной коре. К ним относятся карбиды, сульфиды и др., образование которых связано с резко восстановительными условиями. Наиболее существенны концентрации углерода, связанные с органическим веществом, в углистых хондритах.
Принципиально важные сведения об органическом веществе в метеоритах изложены в работах Г. П. Вдовыкина, Э. Авдерса, Р, Хаятсу, М. Штудира. Впервые органическое вещество в составе метеоритов выделил знаменитый химик И. Берцелиус при анализе углистого хондрита Ала-ис в 1834 г. Результаты его анализа были настолько впечатляющими, что сам он считал это вещество биологического происхождения. В течение XIX столетия химическими анализами было обнаружено присутствие в метеоритах твердых углеводородов, сложных соединений органики с серой и фосфором. Наиболее тщательно и обстоятельно изучались углистые хондриты, значительная часть углерода которых находится в виде органических соединений.
Отсюда видно, что содержание углерода (а также серы и воды) максимально в углистых хондритах типа Cl, a минимально в хондритах СЗ. Таким образом, в настоящее время не подлежит сомнению то обстоятельство что в ро-доначальных телах углистых хондритов в результате самих процессов их формирования возникли сложные органические соединения как закономерный итог химической эволюции ранней Солнечной системы.
Элементарный химический состав углистых хондритов за вычетом летучих веществ очень близок к составу обычных хондритов. Главные особенности различных типов углистых хондритов заключаются в следующем.
Тип G1 представлен непрочными черными камнями, при растирании пальцами рассыпающимися в пыль. Мелкозернистая масса составляет в них примерно 95%. В нее вкраплены хондры (микрохондры), состоящие из оливина и магнетита (размером 1-50 мкм). Минеральный состав метеорита этого типа представлен на рис. 9. Углистые хондриты типа Cl наиболее богаты органическими веществами абиогенного происхождения.
Тип С2 - это серовато-черные камни, значительно более плотные, чем Cl. В основную мелкозернистую массу, составляющую 60% объема, вкраплены значительно более крупные хондры, чем у типа Cl. Наблюдаются срастания первичных микрохондр в единый кристалл.
Тип СЗ представляет собой твердые камни темно-серого, зеленовато-серого или серого цвета. Мелкозернистая масса занимает 35%. Хондры довольно крупные и хорошо выражены.
Распространенность многих химических элементов в углистых хондритах типа Cl обнаруживает ряд характерных отношений, сближающих их с веществом Солнца. Иначе говоря, эти углистые хондриты представляют собой застывшее солнечное вещество, лишенное легких газов.
Органические вещества, найденные в метеоритах, перечислены в табл. 7. Как видно, их список довольно внушительный. Большинство из этих соединений в той или иной степени соответствует универсальным звеньям обмена веществ, известных в живых организмах: аминокислот, белковоподобных полимеров, моно- и полинук-леотидов, порфиринов и других соединений. Близость н составу органических комплексов биологического происхождения оказалась настолько большой, что некоторые авторы стали даже допускать, что в прошлом живые организмы встречались непосредственно в самих метеоритах. По данному вопросу возникла оживленная дискуссия в 60-х годах. Однако тщательные исследования органических соединений из метеоритов не подтвердили наличия оптической активности, что свидетельствует о их абиогенном происхождении.
Сравнение органических веществ метеоритного происхождения с продуктами искусственных реакций типа Фишера-Тропша и ископаемыми органическими веществами биологического происхождения показывает их большую близость, в частности в отношении содержания некоторых углеводородов. Например, в метеоритах преобладают углеводороды с 16 атомами в молекуле, что также наблюдается в земных объектах и продуктах лабораторных экспериментов.
Метеориты являются осколками более крупных тел - астероидов, большая часть которых находится в астероидном поясе на расстоянии 2,3-3,3 а. е. от Солнца. За последние 10 лет в результате астрофизических наблюдений астероидов в области видимой части спектра и инфракрасных волн получены данные, имеющие первостепенное значение для установления генетических взаимоотношений между астероидами и метеоритами. Путем сравнения отражательной способности метеоритов и астероидов удалось установить, что почти все известные классы метеоритов имеют своих аналогов среди изученных астероидов.

В зависимости от отражательной способности астероиды подразделяются на две основные большие группы - темные, или С-астероиды, и относительно светлые, или S-астероиды. Для первых характерно низкое альбедо-менее 0,05, для вторых - свыше 0,1. По спектральным отражательным способностям группа С близка к углистым хондритам, a S - к железокаменным метеоритам и обычным хондритам. Последние фотометрические измерения в общем подтверждают единство материала метеоритов и астероидов. Поэтому все минеральные, химические и структурные особенности метеоритов, полученные и изученные в земных лабораториях, могут быть перенесены на астероиды.
В результате проведенных исследований удалось установить, что в разных областях астероидного пояса состав астероидов разный. В пределах Солнечной системы выявлена принципиально важная космохимическая закономерность: состав астероидов зависит от гелиоцентрического расстояния. Во внутренней части пояса астероидов находятся тела, близкие к обычным хондритам, но по мере увеличения расстояния от Солнца, в пределах 2,5-3,3 а. е., их становится меньше, а число астероидов типа углистых хондритов, которые занимают господствующее положение в середине и краевых частях астероидного пояса, увеличивается. В целом, по данным современных наблюдений, в астероидном поясе даже преобладают углисто-хондритовые тела.
Если действительно большинство астероидов имеет состав углистых хондритов, то вполне естественно, что они содержат много органического вещества, которое определяет их темную окраску и низкую отражательную способность. Так, самую низкую отражательную способность имеет астероид Бамберга (альбедо 0,03). Это темный и довольно крупный объект в астероидном поясе, имеющий поперечник около 250 км.
За последнее время большой интерес вызывают кометы. Были высказаны предположения, что они участвовали в возникновении жизни на Земле или во всяком случае могли внести определенный вклад в состав ее ранней атмосферы. Они могли и доставить на поверхность зарождавшейся планеты первые органические молекулы. Установилось мнение, что кометы лучше всего отражают первичные условия в Солнечной системе.
Большинство комет располагается на самой периферии Солнечной системы. Они имеют чрезвычайно вытянутые орбиты и находятся в сотни и тысячи раз дальше от Солнца, чем Плутон. Из далекой области к Солнцу приближаются долгопериодические кометы. В целом комета представляет собой ком грязного снега. ''Снег'' в комете сложен обычным водяным льдом с примесью углекислого газа и других замерзших газов неизвестного состава. ''Грязь'' представляет собой частицы силикатных пород разного размера, вкрапленные в кометный лед. Можно полагать, что в связи с отсутствием химических взаимодействий кометы являются нетронутыми образцами первоначального вещества, из которого образовалась Солнечная система.
Всюду в кометах обнаруживаются биофильные элементы, в основном С, О, N и Н. В настоящее время о большой долей вероятности установлено, что кометные молекулы близки к тем, которые необходимы для предбиологической эволюции. Они могут быть представлены молекулами аминокислот, пуринов, пиримидинов. Как отмечает А. Дельсемм, существует несколько групп данных, указывающих на то, что кометная пыль имеет природу хондритовых метеоритов. Во-первых, она состоит преимущественно из силикатов и соединений углерода. Во-вторых, соотношения металлов, испарившихся из комет при прохождении вблизи Солнца, соответствуют типичным для хондритов соотношениям. В-третьих, пылевые частицы космического происхождения, отражающие, вероятно, вещество комет, очень близки к составу материала углистых хондритов. И в самом деле, анализ образцов космической пыли указывает на то, что 80% или более пылевых частиц размером меньше 1 мм состоит из вещества, подобного углистым хондритам. Некоторые ученые сравнили содержание углерода в кометах и углистых хондритах и пришли к заключению, что не менее 10% вещества комет представляет собой органические соединения. Природа обнаруженных в кометах химических соединении указывает на большую вероятность того, что порождающие их молекулы по своей сложности сравнимы по крайней мере с молекулами межзвездного пространства.
Таким образом, все данные по космохимии метеоритов, астероидов и комет свидетельствуют о том, что образование органических соединений в Солнечной системе на ранних стадиях ее развития было типичным и массовым явлением. Наиболее интенсивно оно проявилось в пространстве будущего кольца астероидов, но охватывало в разной степени и другие области протопланетной солнечной туманности, включая, вероятно, ту область, из которой возникла Земля. Однако химическая эволюция вещества протосолнечной туманности, дойдя до определенного этапа формирования сложных органических соединений, оказалась как бы замороженной в большинстве тел Солнечной системы, и лишь на Земле она продолжалась, достигнув невероятной сложности в виде живого вещества.

Информация с сайта http://biofile.ru/kosmos/23058.html
Категория: Статьи по биологии | Добавил: konechnoya (22.02.2015)
Просмотров: 238 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar
Лотоцкая Елена © 2016 | Используются технологии uCoz
Некоторые файлы и информация, находящиеся на данном сайте, были найдены в сети ИНТЕРНЕТ, как свободно распространяемые, присланы пользователями сайта или найдены в альтернативных источниках, также использованы собственные материалы. Автор сайта не претендует на авторство ВСЕХ материалов. Если Вы являетесь правообладателем той или иной продукции или информации, и условия, на которых она представлена на данном ресурсе, не соответствуют действительности, просьба немедленно сообщить с целью устранения правонарушения.
Каталог@Mail.ru - каталог ресурсов интернет Наш сайт в каталоге manyweb.ru Союз образовательных сайтов Каталог сайтов Всего.RU GlavBoard.ru Top 100: Учеба, образование и науки Rambler's Top100 "YandeG" - рейтинг сайтов 3500 разработок для учителя Metodichka.org Банк Интернет-портфолио учителей