Воскресенье, 22.10.2017, 20:23Главная | Регистрация | Вход

Вход

  Поиск

Новости биологии

Наш опрос

Каких материалов вы бы хотели больше увидеть на сайте?
Всего ответов: 819

  Статистика


Онлайн всего: 21
Гостей: 18
Пользователей: 3
osajapina, lexakoles, о-окс-255

Теория к ОГЭ и ЕГЭ
Главная » 2017 » Май » 1 » Блок 4. Система и многообразие органического мира (часть 7)
19:04
Блок 4. Система и многообразие органического мира (часть 7)
Блок 4. Система и многообразие органического мира

4.4. Царство растений. Строение (ткани, клетки, органы), жизнедеятельность и размножение растительного организма (на примере покрытосеменных растений). Распознавание (на рисунках) органов растений.

Половое размножение

Половое размножение происходит с образованием половых клеток — гамет — и последующим оплодотворением. Пыльцевое зерно у цветковых растений представляет собой сильно редуцированный мужской гаметофит, содержащий две клетки: вегетативную и генеративную. Генеративная клетка после созревания пыльцевого зерна делится на две мужские половые клетки — спермия. Особенностью спермиев цветковых и голосеменных растений является их неспособность к активному передвижению.
Женские половые клетки растений — яйцеклетки — формируются внутри семязачатков. Семязачаток — это многоклеточное образование семенных растений, из которого затем сформируется семя. Он покрыт плотными покровами — интегументом — со специальным отверстием — пыльцевходом, или микропиле. В семязачатке формируется редуцированный женский гаметофит — зародышевый мешок, образованный шестью гаплоидными (яйцеклеткой, синергидами и антиподами) и одной диплоидной (центральной) клетками. Прямо у пыльцевхода обычно лежат яйцеклетка и сопровождающие ее две синергиды. Функция синергид состоит в том, чтобы выделять химические вещества, на которые ориентируется прорастающая пыльцевая трубка. На противоположном полюсе зародышевого мешка располагаются три антипода, тогда как центральная клетка находится посередине клетки.

Опыление

Оплодотворению у цветковых растений предшествует опыление — процесс переноса пыльцы с пыльников на рыльце пестика. При всем разнообразии видов опыления можно выделить два основных его типа: самоопыление и перекрестное опыление. При самоопылении пыльца попадает с тычинки на рыльце пестика в пределах одного цветка (фиалка, ячмень, арахис, овес, просо и др.). Самоопыление может происходить как в открытых цветках, так и в закрытых. Оно имеет важное биологическое значение, поскольку в таком случае оплодотворение гарантировано, и, к тому же, формируются генетически однородные популяции растений, которые могут успешно расселяться. Самоопыление широко используется в селекции культурных растений. Однако самоопыление часто ограничивает приспособляемость растений к условиям окружающей среды и поэтому не способствует процветанию вида. В связи с этим у многих растений существуют препятствия для самоопыления, которые заключаются в разновременности созревания тычинок и пестиков, их различной длине и наличии механизмов самонесовместимости, когда собственная пыльца не прорастает на рыльце пестика. Однако самым надежным механизмом ограничения самоопыления является двудомность.
Перекрестное опыление может осуществляться как с помощью факторов неживой природы, так и живыми организмами.
Перенос пыльцы происходит при помощи ветра (анемогамия, анемофилия) и воды (гидрогамия, гидрофилия). Ветроопыляемых растений среди покрытосеменных немало. Ветром опыляются почти все злаки, осоковые, сережкоцветные и др. У ветроопыляемых растений цветки небольшие, с невзрачным околоцветником или голые, пыльники и рыльца пестика часто свешиваются из цветка, образуют большое количество легкой и сухой пыльцы, которая переносится на расстояние до 5 км. Так, в одной сережке орешника может быть около 4 млн пылинок, а в соцветии кукурузы — еще больше. Многие ветроопыляемые растения цветут вообще до появления листьев, как, например, береза и орешник. Гидрофилия в основном присуща растениям, целиком погруженным в воду (роголистник, стрелолист и др.). Их цветки имеют длинные нитевидные пыльники, а их пыльца лишена оболочки, защищающей от высыхания.
Опыление при помощи животных в основном производится муравьями (мирмекофилия, мирмекогамия), другими насекомыми (энтомофилия, энтомогамия), птицами (орнитофилия, орнитогамия) и т. д. Однако в основном пыльцу переносят все же насекомые (до 70 % покрытосеменных растений). Отличительным признаком цветков, опыляемых насекомыми и птицами, являются ярко окрашенные околоцветники, благодаря которым они еще издали заметны для опылителей, но и зачастую выделяют нектар, привлекающий их. У многих растений этой группы цветки собраны в соцветия. Приспособление к опылению насекомыми зашло у многих растений настолько далеко, что они не способны даже плодоносить без опыления. Например, в Австралии, куда завезли клевер, не было таких насекомых, которые могли бы опылять его, и только завоз шмелей из Европы способствовал выращиванию этой культуры. Пчелы превращают собранный нектар в запасное вещество — мед, который используется в качестве лечебного средства. Чтобы собрать 1 г меда, пчела должна посетить свыше 7 млн. цветков. Важными медоносными растениями в Украине являются белая акация, липа, гречиха. Опыление птицами свойственно растениям тропиков. Это большей частью ярко окрашенные орхидеи, канны, фуксии и др., образующие много нектара. К ним за нектаром прилетают колибри, нектарницы, медососы и другие птицы, которые не садятся на цветок, а парят возле него, высасывая нектар. При этом пыльца приклеивается к их головкам.
Кроме естественных способов опыления существует также и искусственное опыление, которое применяется человеком для выведения новых сортов культурных растений и повышения урожайности перекрестноопыляемых растений. Например, ранее в посевах подсолнечника ходили люди в специальных рукавицах, которыми слегка хлопали по раскрывшимся корзинкам. Особую роль искусственное опыление играет при неблагоприятных погодных условиях (пониженные температуры, высокая влажность), когда естественное опыление насекомыми или ветром затруднено.

Двойное оплодотворение

Оплодотворение у покрытосеменных отличается от всех остальных растений, так как оно является двойным. Этот процесс был открыт в 1898 году русским ученым С. Г. Навашиным, работавшим в Киевском императорском университете Св. Владимира.
После попадания на рыльце пестика пыльца прорастает благодаря образованию вегетативной клеткой пылинки пыльцевой трубки. Она проникает через рыльце пестика до пыльцевхода в семязачатке. По пыльцевой трубке двигаются два спермия. Когда пыльцевая трубка достигает семязачатка, она лопается, и спермии оказываются вблизи яйцеклетки и центральной клетки, после чего сливаются с ними. В результате двойного оплодотворения из яйцеклетки и первого спермия образуется зигота, а из центральной клетки и второго спермия — триплоидная клетка. Двойноео плодотворение играет важную роль у цветковых, поскольку обеспечивает высокую приспособляемость к условиям окружающей среды.
В конечном итоге из семязачатка формируется семя: интегументы дают начало семенной кожуре, зигота — в результате многократных делений — зародышу, а триплоидная клетка — вторичному эндосперму. Последний является запасом питательных веществ для последующего развития зародыша. Запасные вещества могут оставаться в семенах в эндосперме, но могут также переходить в сам зародыш и откладываться в его листочках — семядолях. В некоторых случаях питательные вещества полностью расходуются в процессе образования семени и поэтому семя лишено их, как, например, у многих орхидей. В таких случаях для прорастания семени необходимо наличие гиф симбиотического гриба.
Превращение семязачатка в семя происходит на материнском растении за счет его питательных веществ. Созревшие семена, содержащие в себе зародыши и запасы питательных веществ для их развития, могут долгое время находиться в состоянии покоя, то есть не прорастать в течение ряда лет. Рекорд хранения семян принадлежит семенам лотоса, пролежавшим на дне болота более 10 тыс. лет, а также еще более древним семенам люпина, найденным в Канаде. Это дает им существенное преимущество перед спорами, которые должны прорастать сразу после высыпания, и гибнут, если условия для их развития неблагоприятны. Покой семян может быть глубоким или неглубоким.
Однако есть некоторые растения, у которых семена прорастают прямо на материнском растении, что зачастую имеет приспособительное значение. Это происходит, например, у растения мангровых зарослей — ризофоры, вследствие чего опадающий плод втыкается корнем в ил под деревом и закрепляется, не будучи подхваченным приливом. Но у культурных растений такое прорастание считается существенным недостатком, так как портит урожай. Ранее такое случалось с рожью в дождливые и теплые годы, что грозило голодом. В наше время это бывает у некоторых сортов кукурузы.

Распространение семян и плодов

Распространение семян и плодов способствует расселению растений, а расселение растений — сохранению и процветанию видов. Плоды и семена могут распространяться самостоятельно или с помощью ветра, воды, птиц и других животных, человека.

Способность растений самостоятельно распространять плоды и семена называется автохорией. К автохорным относятся те растения, плоды которых, вскрываясь, разбрасывают семена на значительное расстояние (желтая акация, недотрога, люпин, герань, фиалка, бешеный огурец).
Распространение плодов и семян ветром называется анемохорией. Это наиболее распространенный способ расселения растений. У анемохорных растений плоды и семена имеют специальные приспособления для распространения: хохолки, волоски, парашютики и др.. Кроме того, сами семена и плоды этих растений очень легкие (береза, ива, тополь, вяз, клен и др.).
Гидрохория — это распространение семян и плодов при помощи воды. Она свойственна в основном водно-болотным растениям, в том числе камышам, осокам, кувшинкам, роголистникам и др.
Довольно часто в природе встречаются орнитохория (распространение плодов и семян птицами) и зоохория (распространение плодов и семян другими животными). Она в основном характерна для растений с сочными плодами, например, омелы белой, рябины, вишни. Нередко таким способом распространяются и растения, плоды которых имеют крючки, прицепки, липкие вещества, как у череды, лопуха, дурнишника.
В ХХ веке значительное влияние на расселение растений стал оказывать человек. Такой способ расселения растений называется антропохорией. Плоды и семена многих растений преодолевают значительные расстояния вместе с транспортом, товарами и продуктами, перевозимыми человеком, часто с одного континента на другой. Если на новом месте условия благоприятны для развития растений, то они могут становиться злостными сорняками, такими как галинсога, портулак и др. Но есть среди них и такие, которые не являются сорняками, а наоборот, приносят ощутимую пользу (аир).

Развитие растительного организма

Процесс индивидуального развития — онтогенез — у цветковых растений делится на четыре периода: эмбриональный, вегетативный, генеративный и период старения. Эмбриональный период развития продолжается от оплодотворения до созревания семени, он был рассмотрен выше.
Вегетативный период
включает прорастание семени и формирование вегетативных органов вплоть до образования генеративных органов. Семена многих растений не способны прорастать сразу же после опадания с материнского растения, так как они зачастую находятся внутри плода. Этому могут препятствовать непроницаемые для воды семенная кожура и околоплодник, накопление в семени подавляющих развитие зародыша веществ, а также недоразвитие самого зародыша.
Для прорастания семян с плотной семенной кожурой или околоплодником (например, грецкого ореха) требуется их механическое повреждение — скарификация. Устранение подавляющих развитие растения веществ требует либо длительного периода нахождения семени при пониженной температуре — стратификации — либо вымывания этих веществ под струей воды. Иногда требуется воздействие каких-либо физиологически активных веществ, например, фитогормонов.После устранения механических и химических препятствий начинается процесс прорастания. Он делится на четыре стадии: набухание, проклевывание, стадия гетеротрофного роста и стадия автотрофного роста.
В процессе набухания ткани семени, содержавшие 5–10 % воды, набирают ее в значительном количестве и увеличиваются в размерах. При этом активизируются процессы жизнедеятельности зародыша и он пускается в рост. На второй стадии прорастания зародышевый корешок прорывает семенную кожуру в месте, которое называется семявходом, после него появляется и зародышевый стебелек. Стадия гетеротрофного роста длится от проклевывания до выхода проростка на свет, так как в это время проросток неспособен еще осуществлять процесс фотосинтеза. На стадии автотрофного роста проросток наконец-то появляется на поверхности земли и постепенно переходит на самообеспечение органическими веществами.
Однако процесс выхода проростка на поверхность существенно различается у разных организмов. Одни из них выносят семядоли на поверхность (фасоль, томаты), а другие оставляют их под землей. Двудольные выходят на поверхность петелькой зародышевого стебелька, а злаки пробивают толщу земли первичным листочком — колеоптилем.
Для прорастания семени недостаточно наличия в почве воды. Для этого необходимы также определенная температура почвы и наличие кислорода в среде, поскольку рост требует значительных затрат энергии, которые проросток может получить только в процессе дыхания.
В дальнейшем происходит рост растительного организма и увеличение количества листьев, ветвление побега и корня. Рост растений происходит за счет двух процессов: деления клеток и их растяжения. Однако рост растения в высоту осуществляется за счет деятельности верхушечных образовательных тканей побега и корня, а у некоторых растений — и в основании междоузлий, тогда как рост в толщину обусловлен делением клеток камбия.
Генеративный период
связывают с закладкой и функционированием репродуктивных органов. Для этого многим растениям требуется не только накопление биомассы, но и определенная продолжительность дня (фотопериод) или период действия пониженных температур. Растения северных широт в основном являются длиннодневными (овес, ячмень, горчица), а южные — короткодневными (хризантема, астра, соя), хотя встречаются и нейтральнодневные растения.
Переход растений к цветению вследствие действия пониженной температуры называется яровизацией. Пониженная температура необходима многим растениям умеренного климата, в том числе и озимой пшенице, которую сеют под зиму для того, чтобы она прошла процесс яровизации.
При благоприятных условиях у растений закладываются цветочные почки, и они переходят к цветению и плодоношению. Однолетние и двулетние растения в основном плодоносят только один раз, а многолетние чаще всего способны делать это неоднократно.
Период старения
начинается после того, как растение завершило последнее плодоношение и уже не способно зацвести вновь. В этот период нарушается синтез многих веществ, постепенно прекращается фотосинтез, в клетках разрушаются хлоропласты и накапливаются токсичные продукты обмена веществ. В результате нарушений, возникающих в растении, запускаются программы гибели клеток. Завершается период старения полным отмиранием растительного организма.
Наряду с закономерными процессами старения целостного организма часть клеток и органов растений обновляется постоянно, что связано как с процессами нормального функционирования этих органов, так и с действием внешних факторов (формирование проводящих и механических тканей, листопад). Часть клеток растений — мертвые (клетки ксилемы, склеренхимы) или утрачивают часть органелл для выполнения своих нормальных функций (флоэма).
Интенсивные процессы жизнедеятельности, постоянно протекающие в листьях, приводят к их быстрому старению и отмиранию. В умеренном климате листья живут в основном один сезон, тогда как в тропиках, субтропиках и на экваторе лист может оставаться на растении до 25 лет, а иногда и всю жизнь, как у вельвичии удивительной. Перед отмиранием из листа оттекают все органические и минеральные вещества, которые можно изъять, разрушается хлорофилл, и становятся заметными каротиноиды или антоцианы, вследствие чего лист приобретает желтую или красную окраску. В клетках основания листа запускаются процессы клеточной смерти, образуется так называемый отделительный слой, клетки которого отделяются друг от друга и лист как бы повисает только на проводящем пучке. Под собственным весом или при порыве ветра лист обламывается, и в узле остается только листовой след. Опадание листьев у растений умеренного пояса имеет и приспособительное значение, так как защищает организм от избыточного испарения в зимний период.
Раздражимость — это биологически активные вещества, способные вызывать ответные реакции в крайне малых концентрациях. В отличие от гормонов животных, они синтезируются не в специализированных эндокринных железах, а в различных частях растения, например, в точках роста корня и побега, и способны передвигаться по организму. Фитогормоны оказывают влияние на все процессы жизнедеятельности растительного организма, в том числе на фотосинтез, синтез белка, дыхание и т. д. Под действием факторов окружающей среды их концентрация в тканях растения может существенно изменяться, что приводит к запуску или приостановке каких-либо процессов.

У растений существуют и иные способы регуляции процессов жизнедеятельности, обеспечивающие их функционирование как целостных организмов.

Способность воспринимать изменения в окружающей среде является неотъемлемым свойством живых организмов, поскольку позволяет своевременно реагировать на эти изменения полезными для себя действиями. Если животные могут избежать действия неблагоприятных факторов благодаря способности к активному передвижению, то большинство растений лишены этой возможности вследствие прикрепленного способа жизни. Тем не менее, они также реагируют на изменения в окружающей среде, но эта реакция заключается в основном в защитной перестройке обмена веществ и в ростовых движениях.
Сильнодействующие факторы среды вызывают у растений угнетение фотосинтеза и других синтетических процессов, быстро закрываются устьица для предотвращения потери воды, подавляется поглощение элементов минерального питания и их передвижение по растению, прекращаются рост и развитие растения. Сложные органические соединения распадаются до более простых для удержания воды в клетках, на короткое время усиливаются процессы распада, для обеспечения организма энергией в этот сложный период активируется дыхание. Однако данный период продолжается недолго и вскоре растение впадает как бы в оцепенение, выжидая наступления более благоприятных условий. Если же изменения в окружающей среде не наступают или действие фактора, вызвавшего столь острую реакцию растения, ослабевает, организм начинает приспосабливаться к новой для себя ситуации, постепенно восстанавливая нормальную жизнедеятельность. Вся совокупность ответных реакций растения на изменение условий среды, как и у животных, называется стрессом. Лишь очень жесткие и длительно действующие факторы способны привести к гибели чрезвычайно выносливых растительных организмов.
Растения способны реагировать и на менее слабые, постоянно действующие или периодически происходящие в природе изменения, например восход и заход солнца.
Характерным является пример с растением, стоящим на подоконнике у окна — его листья повернуты к свету. Еще более выражена реакция на свет у закрытых корзинок подсолнечника, которые поворачиваются в светлое время суток вслед за ходом солнца, а ночью возвращаются на исходную позицию. Появление одностороннего ростового изгиба растения под действием освещенности называется фототропизмом. Изменение освещенности вызывает открывание и закрывание цветков некоторых растений (картофеля) и изменение положения листьев (белая акация, кислица).
Даже продолжительность дня и ночи воспринимается растениями как определенный сигнал — одни растения переходят к цветению (фотопериодизм), а растения умеренного климата прекращают рост и начинают готовиться к зиме. Спектральный состав света также оказывает воздействие на растения — освещение красным светом способствует прорастанию семян салата и переходу растений к цветению.
Земное тяготение также оказывает влияние на растения — корень всегда стремится к центру Земли, а побег — от него. Достаточно развита у растений и температурная чувствительность — они способны открывать и закрывать цветки, опускать и поднимать листья, в том числе и в ответ на суточные колебания температуры, как, например, тюльпаны или фасоль.
Усики цепляющихся растений (винограда, тыквенных, гороха) демонстрируют удивительную способность реагировать на малейшее прикосновение — они тут же начинают обвивать даже самую непрочную опору. На прикосновение реагирует и мимоза стыдливая, мгновенно опускающая и складывающая листочки. Не меньшей чувствительностью обладают насекомоядные растения, захлопывающие листья, как только на них сядет микроскопическое насекомое.
Большая часть описанных движений растений являются ростовыми, поскольку изменение направления роста части растения, открывание-закрывание цветков и опускание-поднимание листьев — это следствие более быстрого удлинения верхней или нижней, правой или левой стороны стебля, листа, корня растения.
Целостность растительного организма
Каждый орган растения выполняет строго определенные функции, однако нуждается при этом и в получении от других органов определенных веществ. Например, корень обеспечивает остальные части растения водой и минеральными солями, а побег — органическими веществами. Сложность процессов, происходящих в растительном организме, требует тонкой координации. Она осуществляется благодаря возникновению и передаче биоэлектрических импульсов, функционированию фитогормональной системы.
При освещении растения, прикосновении к листу мимозы стыдливой, посадке на лист насекомоядного растения новой жертвы в растении возникает электрический ток, похожий на нервный импульс у животных. Он быстро передается во все части растения по паренхиме проводящих пучков, вследствие чего в организме запускаются первичные защитные механизмы и подключается гормональная система.

Фитогормоны - это биологически активные вещества, способные вызывать ответные реакции в крайне малых концентрациях. В отличие от гормонов животных, они синтезируются не в специализированных эндокринных железах, а в различных частях растения, например, в точках роста корня и побега, и способны передвигаться по организму. Фитогормоны оказывают влияние на все процессы жизнедеятельности растительного организма, в том числе на фотосинтез, синтез белка, дыхание и т. д. Под действием факторов окружающей среды их концентрация в тканях растения может существенно изменяться, что приводит к запуску или приостановке каких-либо процессов.
У растений существуют и иные способы регуляции процессов жизнедеятельности, обеспечивающие их функционирование как целостных организмов.

Категория: ЕГЭ по биологии | Просмотров: 63 | Добавил: konechnoya | Рейтинг: 0.0/0
Лотоцкая Елена © 2017 | Используются технологии uCoz
Некоторые файлы и информация, находящиеся на данном сайте, были найдены в сети ИНТЕРНЕТ, как свободно распространяемые, присланы пользователями сайта или найдены в альтернативных источниках, также использованы собственные материалы. Автор сайта не претендует на авторство ВСЕХ материалов. Если Вы являетесь правообладателем той или иной продукции или информации, и условия, на которых она представлена на данном ресурсе, не соответствуют действительности, просьба немедленно сообщить с целью устранения правонарушения.
Каталог@Mail.ru - каталог ресурсов интернет Наш сайт в каталоге manyweb.ru Союз образовательных сайтов Каталог сайтов Всего.RU GlavBoard.ru Top 100: Учеба, образование и науки Rambler's Top100 "YandeG" - рейтинг сайтов 3500 разработок для учителя Metodichka.org Банк Интернет-портфолио учителей